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Background

- cores equivalent to processors

- faster performance — multiple cores

- data is shared by different cores, we need
shared memory
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Coherence

- If one processor modifies the data, how can
other processors know the latest value?

- having stale data and writing stale data
results in error and incoherence
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- Recently proposed protocol

- Very scalable and simple

- Uses timestamps to logically organize shared
memory and ensure coherence

- Allows for “time traveling” of operations
since they don’t have to be done in sequence
of physical time



Library Example

Wants to edit, so jumps
in time and edits at 21
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TARDIS Protocol

- Each cacheline in Tardis has a Read TimeStamp (RTS)
and a Write TimeStamp (WTS)

- WTS - time of last store

- RTS - time of last read

- Private memory - data loaded at timestamp before rts

- Shared memory - rts is the longest private memory lease

- Cacheline Structure:

‘ WTS ‘ RTS ‘ Data




TARDIS Example

Tasks:
Set A=2
Print B
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TARDIS Example
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TARDIS Example
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TARDIS Example
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TARDIS Example
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TARDIS Example
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TARDIS Example

Tasks:
Set A=2
Print B
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TARDIS Example

Tasks:
Set A=2
Print B
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TARDIS Example

Tasks:
Set A=2
Print B
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Timestamp Compression

- Timestamp size should be small for space efficiency

- Data is 512 bits; timestamp originally 64 bits each (25%
of data)

- Wis and rts are usually fairly close, so we use a base
timestamp (bts) and a delta (difference) = rts-wts to
represent rts and wts

- We then ran tests to determine the optimal bts

- Now 16 bits each (6.25% of data)
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Timestamp Compression

Timestamp Compression
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The Renewal Problem

- if we keep modifying data, timestamps will increase by

the arbitrary value of 10
- read-write intensive, want the lease to be something much less than 10

- read-only data, we keep renewing it, lease can be very

large
renew requests incur extra latency and network traffic
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Minimizing Renewals

- an adaptively changing lease
- lines that are written to frequently should have a
small lease

- lines written to less frequently/read-only should
have longer lease

- two basic protocols

- exponentially growing lease
- linearly growing lease
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Evaluations of Lease Protocols

Exponential Lease Prediction

25

Normalized Throughput(Higher isbetter)

ustati
15 static
= exp2
mexp4
= exp8
mexp16
0.5 |I| I
&
*‘D & & ':r‘
& d.o &0 Q\éc Q’@’o § & ‘)'3 f;
S s T
4
c)"z"o & - & &
'evo/ \Q/
&

Benchmark 2 4



Evaluations of Lease Protocols

Normalized Throughput(Higher isbetter)
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Future Work

- better lease prediction algorithm

- Renew in batches
- Renew in the background
- Techniques to slow down timestamp increment

- Further timestamp compression
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