Time travelling in multicore
processors

Henry Liu and Ethan Zou

Outline

1. Background on multicore/distributed systems
2. TARDIS Protocol

3. Optimizations and Evaluations
a. Delta Timestamps
b. Various Lease Predictor Protocols

4. Future Work and Acknowledgements

Background

- cores equivalent to processors

- faster performance — multiple cores

- data is shared by different cores, we need
shared memory

Core Core Core

shared memory

Coherence

- If one processor modifies the data, how can
other processors know the latest value?

- having stale data and writing stale data
results in error and incoherence

Core Core Core

shared memory 4

Outline

1. Background on multicore/distributed systems
2. TARDIS Protocol

3. Optimizations and Evaluations
a. Delta Timestamps
b. Various Lease Predictor Protocols

4. Future Work and Acknowledgements

- Recently proposed protocol

- Very scalable and simple

- Uses timestamps to logically organize shared
memory and ensure coherence

- Allows for “time traveling” of operations
since they don’t have to be done in sequence
of physical time

Library Example

Wants to edit, so jumps
in time and edits at 21

Borrowing

Borrowing W,
4 from 0 - 20

from 0 - 10 % /

TARDIS Protocol

- Each cacheline in Tardis has a Read TimeStamp (RTS)
and a Write TimeStamp (WTS)

- WTS - time of last store

- RTS - time of last read

- Private memory - data loaded at timestamp before rts

- Shared memory - rts is the longest private memory lease

- Cacheline Structure:

‘ WTS ‘ RTS ‘ Data

TARDIS Example

Tasks:
Set A=2
Print B

(| I (| I
Core 0] Corel]

() ()
PTS=0 pemoy PTS=0 pemoy
>) >)
| WTS=0 | RTS=0 | B=0 |

Shared Memory

Tasks:
Set B=3
Print A

TARDIS Example

Tasks:
Set A=2

Print B

PTS=0

Private

Memor;g

N\

Write
equest

PTS=0

Private

Memor;g

N\

Tasks:
Set B=3
Print A

| WTS=0 | RTS=0 | B=0 |

Shared Memory

10

TARDIS Example

Tasks:
Set A=2

Print B

(| I (| I
Core 0] Corel]
(7) ()
Load
Pri A Pri
PTS=0 | ooy PTS=0 jomon
&) > </
| WTS=0 | RTS=0 | B=0 |
Shared Memory

Tasks:
Set B=3
Print A

11

TARDIS Example

g I g I
Tasks: Core 0] Core 1] Tasks:
Set A=2 ~ < - ~| Set B=3
Read
Request
PTS=1 pemoy PTS=0 pemoy
>) >)
| WTS=0 | RTS=0 | B=0 |
Shared Memory .

TARDIS Example

Tasks:
Set A=2
IPrint B |

(| I (| I
Core 0] Corel]
f_\ ()

WTSO0 RTS11 B=0
PTS=1 jemoy PTS=0 pemoy
>) >)
| WTS=0 | RTS=11 | B=0 |
Shared Memory

Tasks:
Set B=3
Print A

13

TARDIS Example

g I g I
Tasks: Core 0] Core 1] Tasks:
Set A=2 ~ < - N [|Set B=3
Write
RTS11 B=0 Request
Privat
- =1 Memory PTS=0 Mr:soery
>) >)
I Owner = Core 1 | B |
Shared Memory

14

TARDIS Example

Tasks:
Set A=2
Print B

Tasks:
Set B=3

g I g I
Core O] Core 1l]
f_\ ()
WTSO0 RTS11 B=0 I WTS12 I RTS12 I B=3 I

rivate rivate
I Owner = Core 1 | B |
Shared Memory

Print A

15

TARDIS Example

Tasks:
Set A=2
Print B

(7 I (7 I
Core 0] Corel]
(1) ()
I 0
WTSO | RTS11 | B=0 Request Iwnmzl RTS12 IB=3I
PTS =1 Memory PTS=12 pemory
>) >)

Share Request

Tasks:
Set B=3
IPrint A |

I Owner = Core 1 | B |

Shared Memory

16

TARDIS Example

Tasks:
Set A=2
Print B

Sharing

Cacheline

Tasks:
Set B=3
IPrint AI

Done

I Owner = Core 1 |

Shared Memory

17

Outline

1. Background on multicore/distributed systems
2. TARDIS Protocol

3. Optimizations and Evaluations
a. Delta Timestamps
b. Various Lease Predictor Protocols

4. Future Work and Acknowledgements

18

Timestamp Compression

- Timestamp size should be small for space efficiency

- Data is 512 bits; timestamp originally 64 bits each (25%
of data)

- Wis and rts are usually fairly close, so we use a base
timestamp (bts) and a delta (difference) = rts-wts to
represent rts and wts

- We then ran tests to determine the optimal bts

- Now 16 bits each (6.25% of data)

19

Timestamp Compression

Timestamp Compression

1.08
o 1.06
o
=
L 104
=
O o2
©
g
£ 1 BTS
=
'.8 0.98 "4
= [|
20.96 16
3 "64
094
0.92
%\@ﬁ\@“ vaw«,e}’@“’
Q&& Q, & Q—‘z& 49 Oc?’ 0&‘0 A v ${$@$ & ¥

Benchmark 20

Outline

1. Background on multicore/distributed systems
2. TARDIS Protocol

3. Optimizations and Evaluations
a. Delta Timestamps
b. Various Lease Predictor Protocols

4. Future Work and Acknowledgements

21

The Renewal Problem

- if we keep modifying data, timestamps will increase by

the arbitrary value of 10
- read-write intensive, want the lease to be something much less than 10

- read-only data, we keep renewing it, lease can be very

large
renew requests incur extra latency and network traffic

EEl Renew | 1
I Miss Speculation | ... |

N A O

% of LLC Req.

2\ Po* \’0,0 0»0 ,\&50 "8"6? PQG
« % <& (W
QW
22

Minimizing Renewals

- an adaptively changing lease
- lines that are written to frequently should have a
small lease

- lines written to less frequently/read-only should
have longer lease

- two basic protocols

- exponentially growing lease
- linearly growing lease

23

Evaluations of Lease Protocols

Exponential Lease Prediction

25

Normalized Throughput(Higher isbetter)

ustati
15 static
= exp2
mexp4
= exp8
mexp16
0.5 |I| I
&
*‘D & & ':r‘
& d.o &0 Q\éc Q’@’o § & ‘)'3 f;
S s T
4
c)"z"o & - & &
'evo/ \Q/
&

Benchmark 2 4

Evaluations of Lease Protocols

Normalized Throughput(Higher isbetter)

1

1.

1

-
w0

=]

5

4

3

1

.8

Linear Lease Prediction

mstatic
mlina
mling
=lin8
|||‘ ‘lli ‘lll ‘l“l ||| | | | ||| | | ‘ll ‘ | :
c ‘F
@56 4 \‘ o‘&? Q@?o & é@o‘) 6'4\"3’0 &@?\‘ @.Q':'\ @%
o5 o5 o o & &
& o k 5 <
& N

Benchmark

25

Outline

1. Background on multicore/distributed systems
2. TARDIS Protocol

3. Optimizations and Evaluations
a. Delta Timestamps
b. Various Lease Predictor Protocols

4. Future Work and Acknowledgements

26

Future Work

- better lease prediction algorithm

- Renew in batches
- Renew in the background
- Techniques to slow down timestamp increment

- Further timestamp compression

27

Acknowledgements

We would like to thank:
- our parents
- our mentor, Xiangyao Yu and Professor Srini

Devadas
- the MIT PRIMES program

28

